Numerical valuation of discrete double barrier options
نویسندگان
چکیده
منابع مشابه
Numerical valuation of discrete double barrier options
In the present paper we explore the problem for pricing discrete barrier options utilizing the Black–Scholes model for the random movement of the asset price. We postulate the problemas a path integral calculation by choosing approach that is similar to the quadrature method. Thus, the problem is reduced to the estimation of a multi-dimensional integral whose dimension corresponds to the number...
متن کاملValuation of Continuously Monitored Double Barrier Options and Related Securities
In this paper, we apply Carr’s randomization approximation and the operator form of theWiener-Hopf method to double barrier options in continuous time. Each step in the resulting backward induction algorithm is solved using a simple iterative procedure that reduces the problem of pricing options with two barriers to pricing a sequence of certain perpetual contingent claims with first-touch sing...
متن کاملValuation of American partial barrier options
This paper concerns barrier options of American type where the underlying asset price is monitored for barrier hits during a part of the option’s lifetime. Analytic valuation formulas of the American partial barrier options are provided as the finite sum of bivariate normal distribution functions. This approximation method is based on barrier options along with constant early exercise policies....
متن کاملDouble-barrier Parisian Options
In this paper we study the excursion time of a Brownian motion with drift outside a corridor by using a four-state semi-Markov model. In mathematical finance, these results have an important application in the valuation of double-barrier Parisian options. We subsequently obtain an explicit expression for the Laplace transform of its price.
متن کاملNumerical valuation of options under Kou’s model
Numerical methods are developed for pricing European and American options under Kou’s jump-diffusion model which assumes the price of the underlying asset to behave like a geometrical Brownian motion with a drift and jumps whose size is log-double-exponentially distributed. The price of a European option is given by a partial integro-differential equation (PIDE) while American options lead to a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 2010
ISSN: 0377-0427
DOI: 10.1016/j.cam.2009.10.029